Unraveling MORB petrogenesis along the East Pacific Rise (EPR) 8°20' N Seamounts and Siqueiros Transform: Insights from olivine minor and trace element geochemistry

**Peng Jiang**<sup>1</sup>, Michael Perfit<sup>1</sup>, Molly Anderson<sup>1</sup>, George Kamenov<sup>1</sup>, Claude Herzberg<sup>2</sup>, Andres Trucco<sup>3</sup>

1. Department of Geological Sciences, University of Florida, USA

2. Department of Earth and Planetary Sciences, Rutgers University, USA

3. Herbert Wertheim College of Engineering - Research Service Centers, University of Florida, USA



#### Extreme MOR mantle heterogeneity in 8°20' N EPR?



#### From Anderson et al. (2021), G-cubed

#### **Siqueiros Transform:** Primitive picritic basalts



## Varying MORBs (D-, N-, E-MORBs) along the <u>8°20' N</u> <u>Near-Axis Seamounts Chain</u>



From Anderson et al. (2021), G-cubed

Geochemically diverse olivine-bearing MORBs were selected for systematic geochemical study.

## **Olivine petrography among various MORBs**



Siqueiros DMORBs: euhedral-subhedral olivines, no significant embayment

## **Olivine petrography among various MORBs**



8°20' N Seamounts (various MORBs): euhedral-subhedral olivines, but some EMORBs show notable embayment (melt-crystal reaction)

## **High-precision olivine minor and trace analyses**



- 13 elements (including Na, Al, Ca, Ni, Ti, P, Mn, Zn, etc.) analyzed by Cameca EPMA
- 18 elements (adding Sc, V, Cu, etc.) analyzed by LA-ICP-MS

#### Discriminating olivine origin: "igneous" or "mantle"



- Siqueiros picrite: mantle olivines (metasomatized).
- 8°20' N Seamounts: igneous olivines (majority), with some "mantle" cores.

# Notable Ca-Ti enrichment in olivines: implications for mantle metasomatism



Mantle metasomatized by carbonatesilicate melt. (Foley et al., 2013)

Base image from Foley et al (2013)

#### Mantle metasomatism: hot spot-like melt source



Mantle metasomatized by **hot-spot like** enriched melt.

Base image from Foley et al (2013)

#### Mantle metasomatism: hot spot-like melt source



Mantle metasomatized by **hot-spot like** enriched melt.

 High water content in melts (revealed by Ol antecrysts)

Base image from Herzberg (2021, personal communication), PRIMELT3 modeling. Shaded olivine regions, cf. Gavrilenko et al (2016)

#### Mantle source constraints: No pyroxenite needed!



 Basically, falling around the peridotite mantle source region.

No pyroxenite is required.

Base image from Howarth and Harris (2017)

#### Mantle source constraints: No pyroxenite needed!



Base image from Gleeson and Gibson (2019)

#### BUT... Why is there extreme heterogeneity of lavas?



Ca-Ti and Sc-Ni plots as indicators of heterogeneous mantle metasomatism.

- Fractional crystallization?
- Magma mixing?

#### **Tracing magmatic processes: Fractional Crystallization**



#### **Divergent FC trends**

Cpx crystallization observed ONLY in very enriched EMORBs

#### **Tracing magmatic processes: Fractional Crystallization**



#### Divergent FC trends

- Revealed by Sc, Ti, V,
  P Fo plots.
- Cpx crystallization observed ONLY in very enriched EMORBs

#### **Tracing magmatic processes: Fractional Crystallization**



Base image from Herzberg (2021, personal communication), PRIMELT3 modeling

 Different parental melts from heterogeneously metasomatized mantle are expected, with potential higher-pressure crystallization.

#### Magma mixing revealed by normally & reversely zoned olivine





Normally zoned olivines: "depleted" core, "enriched" rim
 Rapid P (slow diffusion element) increase from igneous core to igneous rim: magma mixing (Shea et al., 2019)

#### D-melt mixed with E-melt, forming EMORB

#### Magma mixing revealed by normally & reversely zoned olivine



Reversely zoned olivines: "Enriched" core with "depleted" rim

E-melt mixed with D-melt, forming DMORB

## MORB Petrogenesis along 8°20'N EPR : a genetic model



Figure modified after Schmerr (2012)

- Peridotite has been heterogeneously metasomatized by carbonate-silicate melts and hot-spot like enriched melts.
- Divergent FC + varying magma mixing generated heterogenous MORB types in 8°20' N Seamounts.

## **Conclusions and Implications:**

- Geochemically diverse MORBs along the East Pacific Rise (EPR) 8°20' N Seamounts and Siqueiros Transform evolved from a peridotite mantle source, without clear evidence of a pyroxenite mantle source.
- The peridotite mantle has been heterogeneously metasomatized by carbonate-silicate melts and "hot-spot"-like enriched melts, with potential recycled continental crust contribution (?). Partial melting of this metasomatized mantle generated parental magmas with varying compositions.
- Divergent fractional crystallization paths played a significant role in generating MORBs extreme composition variations, along with off-axis magma mixing at varying evolution stages.

## Thank You!

